GENERAL

Standard
- EN61010-1
- EN61010-2-201
- EN61131-2

Dimensions (W × H × D)
72x90x62mm

Weight
250g

Mounting
Top hat rail EN50022, 35mm

ENVIRONMENTAL CONDITIONS

Operating ambient temperature
0°C – 55°C

Relative humidity – non-condensing
80 % for temp. up to 31 °C, decreasing linearly to 50 % relative humidity at 55 °C

Pollution Degree
PD2

Altitude
up to 2000m AMSL

Vibration (5 ≤ f ≤ 9 Hz)
1,75 mm amplitude sinus

3,5 mm amplitude random

Vibration (9 ≤ f ≤ 150 Hz)
0,5 g acceleration sinus

1,0 g acceleration random

Transport and Storage
-20°C – +70°C

10 to 90% no condensation

Altitude 3000m AMSL

Shock response
15g, 11ms half sinus all 3 axes

I/O

Supply voltage
12V or 24V

USB (Power for programming only)
USB-B, 2.0

Ethernet
RJ45, 10/100Mbps

RS485 (no termination inside)
250kb

Inputs, no galvanic insulation
12

- **Common analog/digital**
 10

- **Fixed digital, ext. Interrupt usable**
 2

Digital Outputs, no galvanic insulation
12

Relay Outputs, galvanic insulation
10

PIN Header, no galvanic insulation
42, partially parallel to terminal I/Os

Logic level I/Os
14

Analog 0-5V Inputs
14

Communication
SPI, 2xUART, I2C, Reset

Internal Power
+3,3V, +5V, ARef, GND

TERMINAL CAPACITIES

Relay Output, Power Input
2,5mm² (24-12AWG)

Strip length
6-7mm

Max. tightening torque
0,5Nm

Digital, Analog Input Output
1,5mm² (30-16AWG)

Strip length
5-6mm

Max. tightening torque
0,2Nm

Pin header connector
2x 26 Pin, Dual row, 2.54 pitch

PROTECTION

ESD HBM Class 0
Contact discharge: ±4kV

Air discharge: ±8kV

Supply input over current protection
Internal Fuse 20A

Relay Output
External Fuse required

Digital Output
Overload, short circuit, ESD

Signal Input
Overvoltage, ESD

Pin header connector
ESD
Current +5V, +3,3V total 200mA, resettable fuse

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Condition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>12V range</td>
</tr>
<tr>
<td></td>
<td>24V range</td>
</tr>
<tr>
<td>Signal input low level</td>
<td>12V range</td>
</tr>
<tr>
<td></td>
<td>24V range</td>
</tr>
<tr>
<td>Signal input high level</td>
<td>12V range</td>
</tr>
<tr>
<td></td>
<td>24V range</td>
</tr>
<tr>
<td>Analog signal input</td>
<td>12V range</td>
</tr>
<tr>
<td></td>
<td>24V range</td>
</tr>
<tr>
<td>Signal input current</td>
<td>max. current</td>
</tr>
<tr>
<td>Logic "0" level</td>
<td>@ pin header</td>
</tr>
<tr>
<td>Logic “1” level</td>
<td>@ pin header</td>
</tr>
<tr>
<td>Signal output low level</td>
<td>12V range</td>
</tr>
<tr>
<td></td>
<td>24V range</td>
</tr>
<tr>
<td>Signal output high level</td>
<td>Vin – 10%</td>
</tr>
<tr>
<td>Signal output – PWM functionality</td>
<td>Duty cycle</td>
</tr>
<tr>
<td>Relay output, Contact rating</td>
<td>Resistive</td>
</tr>
<tr>
<td></td>
<td>Load</td>
</tr>
<tr>
<td>Common Relay terminal</td>
<td>max. current</td>
</tr>
<tr>
<td>Galvanic insulation</td>
<td>coil to contact</td>
</tr>
<tr>
<td>Relay ON in case of PWM functionality</td>
<td>Duty cycle</td>
</tr>
</tbody>
</table>

LED SIGNALIZATION

- **Power LEDs coding**
 - only USB powered: 12V green, 24V green
 - input voltage out of range: 12V green, 24V orange
 - input voltage 10.2V – 15,0V: 12V green, 24V orange
 - input voltage 20.4V – 30,0V: 12V orange, 24V green
 - input voltage < 7V: both LEDs off

- **Device in reset state**
 - Reset LED yellow

- **Device in run state**
 - Reset LED off

- **Signal input at high (logic 1) level**
 - Corresponding LED green

- **Signal input at low (logic 0) level**
 - Corresponding LED off

- **Signal input in use as analog input**
 - Corresponding LED green on when input level reach high (logic 1) state

- **Signal/Relay output set to active**
 - Corresponding LED green

- **Signal/Relay output set to inactive**
 - Corresponding LED off

PHYSICAL DIMENSIONS

![Diagram](image1.png)

![Diagram](image2.png)